References and Notes
<A NAME="RG35010ST-1A">1a</A>
Ito C.
Itoigawa M.
Aizawa K.
Yoshida K.
Ruangrungsi N.
Furukawa H.
J. Nat.
Prod.
2009,
72:
1202
<A NAME="RG35010ST-1B">1b</A>
McErlean CSP.
Sperry J.
Blake AJ.
Moody CJ.
Tetrahedron
2007,
63:
10963
<A NAME="RG35010ST-1C">1c</A>
Carusso A.
Lancelot J.-C.
El-Kashef H.
Sinicropi MS.
Legay R.
Lesnard A.
Rault S.
Tetrahedron
2009,
65:
10400
<A NAME="RG35010ST-1D">1d</A>
Mal D.
Senapathi BK.
Pahari P.
Tetrahedron
2007,
63:
3768
<A NAME="RG35010ST-1E">1e</A>
Fousteris MA.
Papakyriakou A.
Koutsourea A.
Manioudaki M.
Lampropoulou E.
Papadimitriou E.
Spyroulias GA.
Nikolaropoulos SS.
J.
Med. Chem.
2008,
51:
1048
<A NAME="RG35010ST-1F">1f</A>
Knöll J.
Knölker H.-J.
Tetrahedron
Lett.
2006,
47:
6079
<A NAME="RG35010ST-1G">1g</A>
Bergman J.
Pelcman B.
Pure Appl. Chem.
1990,
62:
1967
<A NAME="RG35010ST-2">2</A>
Knölker HJ.
Reddy KR.
Chem.
Rev.
2002,
102:
4303
<A NAME="RG35010ST-3A">3a</A>
Stokes BJ.
Jovanović B.
Dong H.
Richert KJ.
Riell RD.
Driver TG.
J. Org. Chem.
2009,
74:
3225
<A NAME="RG35010ST-3B">3b</A>
Tsang WCP.
Zheng N.
Buchwald SL.
J. Am. Chem. Soc.
2005,
127:
14560
<A NAME="RG35010ST-3C">3c</A>
Liu Z.
Larock RC.
Org. Lett.
2004,
6:
3739
<A NAME="RG35010ST-3D">3d</A>
Kong A.
Han X.
Lu X.
Org. Lett.
2006,
8:
1339
<A NAME="RG35010ST-3E">3e</A>
Zhao J.
Larock RC.
Org. Lett.
2005,
7:
701
<A NAME="RG35010ST-3F">3f</A>
Jean DJSt.
Poon SF.
Schwarzbach JL.
Org. Lett.
2007,
9:
4897
<A NAME="RG35010ST-3G">3g</A>
Jordan-Hore JA.
Carin CC.
Gulias M.
Beck EM.
Gaunt MJ.
J. Am. Chem. Soc.
2008,
130:
16184
<A NAME="RG35010ST-3H">3h</A>
Kong W.
Fu C.
Ma S.
Chem. Commun.
2009,
4572
<A NAME="RG35010ST-4A">4a</A>
Praveen C.
Kumar KH.
Muralidharan D.
Perumal PT.
Tetrahedron
2008,
64:
2369
<A NAME="RG35010ST-4B">4b</A>
Praveen C.
Sagayaraj YW.
Perumal PT.
Tetrahedron Lett.
2009,
50:
644
<A NAME="RG35010ST-4C">4c</A>
Praveen C.
Kiruthiga P.
Perumal PT.
Synlett
2009,
1990
<A NAME="RG35010ST-4D">4d</A>
Praveen C.
Karthikeyan K.
Perumal PT.
Tetrahedron
2009,
65:
9244
<A NAME="RG35010ST-4E">4e</A>
Praveen C.
Jegatheesan S.
Perumal PT.
Synlett
2009,
2795
<A NAME="RG35010ST-4F">4f</A>
Praveen C.
Kalyanasundaram A.
Perumal PT.
Synlett
2010,
777
<A NAME="RG35010ST-4G">4g</A>
Praveen C.
Iyyappan C.
Perumal PT.
Tetrahedron Lett.
2010,
51:
4767
<A NAME="RG35010ST-4H">4h</A>
Praveen C.
Dheenkumar P.
Perumal PT.
Bioorg.
Med. Chem. Lett.
2010,
20:
7292
<A NAME="RG35010ST-4I">4i</A>
Praveen C.
Parthasarathy K.
Perumal PT.
Synlett
2010,
1635
<A NAME="RG35010ST-5A">5a</A>
Hashmi ASK.
Hutchings GJ.
Angew. Chem.
2006,
118:
8064
<A NAME="RG35010ST-5B">5b</A>
Hashmi ASK.
Hutchings GJ.
Angew. Chem.
Int. Ed.
2006,
45:
7896
<A NAME="RG35010ST-5C">5c</A>
Hashmi ASK.
Rudolph M.
Chem.
Soc. Rev.
2008,
37:
1766
<A NAME="RG35010ST-6A">6a</A>
Zhang L.
J. Am. Chem. Soc.
2005,
127:
16804
<A NAME="RG35010ST-6B">6b</A>
Ferrer C.
Echavarren AM.
Angew. Chem. Int.
Ed.
2006,
45:
1105
Despite the commercial availability
of some N-alkylindole-2-carboxaldehydes,
we prepared other N-substituted indole-2-carboxaldehydes
in our laboratory using literature procedures, see:
<A NAME="RG35010ST-7A">7a</A>
Benincori T.
Marchesi A.
Pilati T.
Ponti A.
Rizzo S.
Sannicolò F.
Chem. Eur. J.
2009,
15:
94
<A NAME="RG35010ST-7B">7b</A>
Tsotinis A.
Afroudakis PA.
Davidson K.
Prashar A.
Sugden D.
J.
Med. Chem.
2007,
50:
6436
<A NAME="RG35010ST-7C">7c</A>
Sechi M.
Derudas M.
Dallocchio R.
Dessì A.
Bacchi A.
Sannia L.
Carta F.
Palomba M.
Ragab O.
Chan C.
Shoemaker R.
Sei S.
Dayam R.
Neamati N.
J.
Med. Chem.
2004,
47:
5298
<A NAME="RG35010ST-7D">7d</A>
Li C.-F.
Liu H.
Liao J.
Cao Y.-J.
Liu X.-P.
Xiao W.-J.
Org. Lett.
2007,
9:
1847
<A NAME="RG35010ST-7E">7e</A>
Choshi T.
Sada T.
Fujimoto H.
Nagayama C.
Sugino E.
Hibino S.
J. Org. Chem.
1997,
62:
2535
For the bromination of propargyl
alcohols, see:
<A NAME="RG35010ST-8A">8a</A>
Kwong FY.
Lee HW.
Qiu L.
Lam WH.
Li Y.-M.
Kwong HL.
Chan ASC.
Adv. Synth. Catal.
2005,
347:
1750
For the synthetic applicability
of Au/Ag catalytic systems, see:
<A NAME="RG35010ST-9A">9a</A>
Johansson MJ.
Gorin DJ.
Staben ST.
Toste FD.
J.
Am. Chem. Soc.
2005,
127:
18002
<A NAME="RG35010ST-9B">9b</A>
Enomoto T.
Obika S.
Yasui Y.
Takemoto Y.
Synlett
2008,
1647
<A NAME="RG35010ST-9C">9c</A>
Lee JH.
Toste FD.
Angew. Chem. Int. Ed.
2007,
46:
912
<A NAME="RG35010ST-9D">9d</A>
Horino Y.
Luzung MR.
Toste FD.
J. Am. Chem. Soc.
2006,
128:
11364
<A NAME="RG35010ST-9E">9e</A>
Ito Y.
Sawamura M.
Hayashi T.
J.
Am. Chem. Soc.
1986,
108:
6405
<A NAME="RG35010ST-9F">9f</A>
Shi Z.
He C.
J. Am. Chem. Soc.
2004,
126:
5964
<A NAME="RG35010ST-9G">9g</A>
Hashmi ASK.
Blanco MC.
Kurpejović E.
Frey W.
Adv.
Synth. Catal.
2006,
348:
709
<A NAME="RG35010ST-9H">9h</A>
Hashmi ASK. In Silver
in Organic Chemistry
John Wiley and Sons, Inc.;
Hoboken:
2010.
Chap.
12.
p.357-379
For the use of gold catalysis in
hydroarylation reactions, see:
<A NAME="RG35010ST-10A">10a</A>
Reetz MT.
Sommer K.
Eur. J. Org.
Chem.
2003,
3485
<A NAME="RG35010ST-10B">10b</A>
Tarselli MA.
Liu A.
Gagné MR.
Tetrahedron
2009,
65:
1785
<A NAME="RG35010ST-10C">10c</A>
Shi Z.
He C.
J. Org. Chem.
2004,
69:
3669
<A NAME="RG35010ST-10D">10d</A>
Hashmi ASK.
Blanco MC.
Eur.
J. Org. Chem.
2006,
4340
<A NAME="RG35010ST-10E">10e</A>
Mamane V.
Hannen P.
Furstner A.
Chem.
Eur. J.
2004,
10:
4556
<A NAME="RG35010ST-10F">10f</A>
Hashmi ASK.
Ding L.
Bats JW.
Fischer P.
Frey W.
Chem. Eur. J.
2003,
9:
4339
<A NAME="RG35010ST-10G">10g</A>
Hashmi ASK.
Schwarz L.
Choi
J.-H.
Frost TM.
Angew.
Chem. Int. Ed.
2000,
39:
2285 ; Angew. Chem. 2000, 112, 2382
<A NAME="RG35010ST-10H">10h</A>
Dyker G.
Muth E.
Hashmi ASK.
Ding L.
Adv. Synth. Catal.
2003,
345:
1247
<A NAME="RG35010ST-11">11</A>
Nishimura Y.
Shiraishi T.
Yamaguchi M.
Tetrahedron Lett.
2008,
49:
3492
<A NAME="RG35010ST-12">12</A>
Typical procedure
for the
Z
-selective
Wittig olefination: To a degassed solution of propargyl ylide 4a (395 mg, 1.2 mmoL) in anhydrous THF
(5 mL) under an N2 atmosphere, was added Me3Ga
(1.0 M in hexane, 1.5 mL, 1.5 mmoL) and the mixture was stirred
for 10 min at 0 ˚C. To this reaction mixture was
added a solution of N-methylindole-2-carboxaldehyde
(3a; 158 mg, 1.00 mmoL) in THF (5 mL) and
stirring was continued for 5 h. After completion of the reaction
as indicated by TLC, the reaction was quenched with ice-cold water
and extracted with EtOAc (3 × 20 mL). The
organic layer was dried over anhydrous sodium sulfate, concentrated
under reduced pressure, and purified by column chromatography over
silica gel (100-200 mesh) to afford the pure Z-isomer (154 mg, 79%) and E-isomer (27 mg, 14%). 1-Methyl-2-[(
Z
)-pent-1-en-3-ynyl]-1
H
-indole (1a′): Brown
paste. IR (neat): 2928, 1733, 1430, 1224, 1119 cm-¹. ¹H
NMR (CDCl3, 500 MHz): δ = 2.21 (s,
3 H, CH3), 3.71 (s, 3 H, NCH3),
5.77 (d, J = 11.4 Hz,
1 H, indolyl-CH=CH),
6.70 (d, J = 11.4 Hz,
1 H, indolyl-CH=CH),
7.14-7.15 (m, 1 H, ArH), 7.21-7.30 (m,
2 H, ArH), 7.55 (s, 1 H, indolyl-C(3)H), 7.69
(d, J = 7.6 Hz,
1 H, ArH). ¹³C NMR (CDCl3,
125 MHz): δ = 5.2, 29.5, 78.9, 95.5, 102.9, 108.5, 109.3,
119.9, 121.2, 122.5, 125.3, 127.8, 128.5, 136.1. MS (EI): m/z = 195 [M+].
Anal. Calcd for C14H13N: C, 86.12; H, 6.71;
N, 7.17. Found: C, 85.98; H, 6.76; N, 7.17. 1-Methyl-2-[(
E
)-pent-1-en-3-ynyl]-1
H
-indole(1a): Black
paste.
IR (neat): 2917, 1735, 1425, 1222, 1123 cm-¹. ¹H
NMR (CDCl3, 500 MHz): δ = 2.08 (s,
3 H, CH3), 3.78 (s, 3 H, NCH3),
6.23 (d, J = 15.3 Hz,
1 H, indolyl-CH=CH),
6.75 (s, 1 H, indolyl-C(3)H), 6.96 (d, J = 16.05 Hz,
1 H, indolyl-CH=CH),
7.12 (t, J = 7.6 Hz,
1 H, ArH), 7.23 (t, J = 7.6 Hz, 1 H,
ArH), 7.28 (d, J = 8.4 Hz,
1 H, ArH), 7.59 (d, J = 7.6 Hz,
1 H, ArH). ¹³C NMR (CDCl3,
125 MHz): δ = 4.7, 29.8, 79.3, 89.5, 99.3, 109.3,
110.4, 120.1, 120.7, 122.2, 127.8, 128.5, 137.4, 138.3. MS (EI): m/z = 195 [M+].
Anal. Calcd for C14H13N: C, 86.12; H, 6.71;
N, 7.17. Found: C, 86.25; H, 6.65; N, 7.10
<A NAME="RG35010ST-13">13</A>
Typical procedure
for the carbocyclization of (
Z
)-(2-enynyl) indoles: To an air-dried Schlenk
flask under N2 atmosphere was added 5 mol% AuCl(Ph3P)
and 5 mol% AgSbF6, followed by nitromethane
(1 mL) and the mixture was stirred for 15 min at room temperature.
A solution of 5a (1.0 mmoL) in nitromethane
(2 mL) was added and the mixture was stirred at 60 ˚C.
After completion of the reaction as indicated by TLC, the reaction
was quenched in water and extracted with EtOAc (3 × 20 mL).
The organic layer was dried with anhydrous Na2SO4 and
concentrated under reduced pressure. The crude residue was purified
by column chromatography to afford pure 4,9-dimethyl-carbazole (2a) as a colorless solid. Mp 105-106 ˚C
(Lit.¹6 105-105.5 ˚C).
IR (KBr): 3055, 3025, 2952, 2928, 2855, 1625, 1599, 1560, 1467,
1420, 1132 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 2.97 (s,
3 H, Ar-CH3), 3.89 (s, 3 H, NCH3),
7.09-7.13 (m, 1 H, ArH), 7.30-7.35 (m,
2 H, ArH), 7.45-7.50 (m, 1 H, ArH), 7.55-7.59
(m, 1 H, ArH), 8.25-8.29 (m, 1 H, ArH). ¹³C
NMR (125 MHz, CDCl3): δ = 20.9, 29.1,
106.2, 108.4, 119.0, 120.7, 121.5, 122.5, 123.6, 125.2, 125.6, 133.6,
141.1, 141.2. MS (EI): m/z = 195 [M+].
Anal. Calcd for C14H13N: C, 86.12; H, 6.70;
N, 7.08. Found: C, 85.95; H, 6.75; 7.20
<A NAME="RG35010ST-14">14</A>
Hashmi ASK.
Salathé R.
Frey W.
Eur. J. Org. Chem.
2007,
1648
<A NAME="RG35010ST-15A">15a</A>
Hashmi ASK.
Angew. Chem.
2010,
122:
5360
<A NAME="RG35010ST-15B">15b</A>
Hashmi ASK.
Angew. Chem. Int. Ed.
2010,
49:
5232
<A NAME="RG35010ST-16">16</A>
Hoffmann D.
Rathkamp G.
Nesnow S.
Anal.
Chem.
1969,
41:
1256